Enrichr - a gene set enrichment analysis web server: Website, Paper
enrichR - an R interface to all ‘Enrichr’ databases: CRAN
Demo Dataset: E-MTAB-8411 from The clock gene Bmal1 inhibits macrophage motility, phagocytosis, and impairs defense against pneumonia. PNAS. 2020;117(3):1543-1551.
License: GPL-3.0
R
cd /ngs/GO-Enrichment-Analysis-Demo
R
library("enrichR")
library("ggplot2")
If you have downloaded the DESeq2_DEG.txt
file with wget
:
data.table::fread("DESeq2_DEG.txt")
data <-$GeneID <- substr(data$GeneID, 1, 18) data
If you like to donwload the file in R
now:
data.table::fread("https://raw.githubusercontent.com/ycl6/GO-Enrichment-Analysis-Demo/master/DESeq2_DEG.txt")
data <-$GeneID <- substr(data$GeneID, 1, 18) data
data
## GeneID GeneSymbol log2fc pvalue padj
## 1: ENSMUSG00000000001 Gnai3 0.08804493 0.1925609 0.6146732
## 2: ENSMUSG00000000003 Pbsn NA NA NA
## 3: ENSMUSG00000000028 Cdc45 -0.32106635 0.1401127 0.5331437
## 4: ENSMUSG00000000031 H19 -1.20339889 0.7161464 NA
## 5: ENSMUSG00000000037 Scml2 -0.57746426 0.2979159 NA
## ---
## 55381: ENSMUSG00000118636 AC117663.3 NA NA NA
## 55382: ENSMUSG00000118637 AL772212.1 NA NA NA
## 55383: ENSMUSG00000118638 AL805980.1 NA NA NA
## 55384: ENSMUSG00000118639 AL590997.4 NA NA NA
## 55385: ENSMUSG00000118640 AC167036.2 0.06415390 0.9208414 NA
which(data$padj < 0.05 & data$log2fc > 0) # FDR < 0.05 and logFC > 0
up.idx <- which(data$padj < 0.05 & data$log2fc < 0) # FDR < 0.05 and logFC < 0 dn.idx <-
dim(data)
## [1] 55385 5
length(up.idx)
## [1] 383
length(dn.idx)
## [1] 429
data[up.idx,]$GeneSymbol
up.genes <- data[dn.idx,]$GeneSymbol dn.genes <-
head(up.genes, 10)
## [1] "Axin2" "Hnrnpd" "Kcnn3" "Mapk7" "Agpat3" "Sema6b" "Efnb2" "Il16" "Ltbp1"
## [10] "Rgs19"
head(dn.genes, 10)
## [1] "Cox5a" "Pdgfb" "Itga5" "Cd52" "Dnmt3l" "Tubb6" "Ell2" "Ifrd1" "Stk38l"
## [10] "Ubl3"
Alternatively, if you only have Ensembl gene ID
data[up.idx,]$GeneID
up.genes <- data[dn.idx,]$GeneID dn.genes <-
head(up.genes, 10)
## [1] "ENSMUSG00000000142" "ENSMUSG00000000568" "ENSMUSG00000000794" "ENSMUSG00000001034"
## [5] "ENSMUSG00000001211" "ENSMUSG00000001227" "ENSMUSG00000001300" "ENSMUSG00000001741"
## [9] "ENSMUSG00000001870" "ENSMUSG00000002458"
head(dn.genes, 10)
## [1] "ENSMUSG00000000088" "ENSMUSG00000000489" "ENSMUSG00000000555" "ENSMUSG00000000682"
## [5] "ENSMUSG00000000730" "ENSMUSG00000001473" "ENSMUSG00000001542" "ENSMUSG00000001627"
## [9] "ENSMUSG00000001630" "ENSMUSG00000001687"
We would need to convert any other identifier format to SYMBOL
which is the required input identifier format. This can be done by using the select
function from AnnotationDbi
that we saw in Part 1 of this demo, or by using the “Biological Id TRanslator” bitr
function from clusterProfiler
which is a wrapper function of AnnotationDbi::select
.
Here, we will use bitr
here to see how this can be done.
# Use fromType = "ENSEMBL" if your input identifier is Ensembl gene ID
clusterProfiler::bitr(up.genes, fromType = "ENSEMBL", toType = "SYMBOL",
up.genes.df =OrgDb = "org.Mm.eg.db")
##
## Loading required package: org.Mm.eg.db
## Loading required package: AnnotationDbi
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport,
## clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply,
## parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname,
## do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect,
## is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int,
## pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff,
## sort, table, tapply, union, unique, unsplit, which.max, which.min
## Loading required package: Biobase
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with 'browseVignettes()'. To
## cite Bioconductor, see 'citation("Biobase")', and for packages
## 'citation("pkgname")'.
## Loading required package: IRanges
## Loading required package: S4Vectors
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
##
## expand.grid
##
## 'select()' returned 1:many mapping between keys and columns
head(up.genes.df, 10)
## ENSEMBL SYMBOL
## 1 ENSMUSG00000000142 Axin2
## 2 ENSMUSG00000000568 Hnrnpd
## 3 ENSMUSG00000000794 Kcnn3
## 4 ENSMUSG00000001034 Mapk7
## 5 ENSMUSG00000001211 Agpat3
## 6 ENSMUSG00000001227 Sema6b
## 7 ENSMUSG00000001300 Efnb2
## 8 ENSMUSG00000001741 Il16
## 9 ENSMUSG00000001870 Ltbp1
## 10 ENSMUSG00000002458 Rgs19
clusterProfiler::bitr(dn.genes, fromType = "ENSEMBL", toType = "SYMBOL",
dn.genes.df =OrgDb = "org.Mm.eg.db")
## 'select()' returned 1:many mapping between keys and columns
head(dn.genes.df, 10)
## ENSEMBL SYMBOL
## 1 ENSMUSG00000000088 Cox5a
## 2 ENSMUSG00000000489 Pdgfb
## 3 ENSMUSG00000000555 Itga5
## 4 ENSMUSG00000000682 Cd52
## 5 ENSMUSG00000000730 Dnmt3l
## 6 ENSMUSG00000001473 Tubb6
## 7 ENSMUSG00000001542 Ell2
## 8 ENSMUSG00000001627 Ifrd1
## 9 ENSMUSG00000001630 Stk38l
## 10 ENSMUSG00000001687 Ubl3
List available databases from Enrichr
listEnrichrDbs()
dbs <- dbs[order(dbs$libraryName),]
dbs <-
class(dbs)
## [1] "data.frame"
dim(dbs)
## [1] 171 5
head(dbs)
## geneCoverage genesPerTerm libraryName
## 56 4271 128 Achilles_fitness_decrease
## 55 4320 129 Achilles_fitness_increase
## 82 16129 292 Aging_Perturbations_from_GEO_down
## 83 15309 308 Aging_Perturbations_from_GEO_up
## 171 12361 124 Allen_Brain_Atlas_10x_scRNA_2021
## 53 13877 304 Allen_Brain_Atlas_down
## link numTerms
## 56 http://www.broadinstitute.org/achilles 216
## 55 http://www.broadinstitute.org/achilles 216
## 82 http://www.ncbi.nlm.nih.gov/geo/ 286
## 83 http://www.ncbi.nlm.nih.gov/geo/ 286
## 171 https://portal.brain-map.org/ 766
## 53 http://www.brain-map.org/ 2192
Show all database names.
$libraryName dbs
## [1] "Achilles_fitness_decrease"
## [2] "Achilles_fitness_increase"
## [3] "Aging_Perturbations_from_GEO_down"
## [4] "Aging_Perturbations_from_GEO_up"
## [5] "Allen_Brain_Atlas_10x_scRNA_2021"
## [6] "Allen_Brain_Atlas_down"
## [7] "Allen_Brain_Atlas_up"
## [8] "ARCHS4_Cell-lines"
## [9] "ARCHS4_IDG_Coexp"
## [10] "ARCHS4_Kinases_Coexp"
## [11] "ARCHS4_TFs_Coexp"
## [12] "ARCHS4_Tissues"
## [13] "BioCarta_2013"
## [14] "BioCarta_2015"
## [15] "BioCarta_2016"
## [16] "BioPlanet_2019"
## [17] "BioPlex_2017"
## [18] "Cancer_Cell_Line_Encyclopedia"
## [19] "CCLE_Proteomics_2020"
## [20] "ChEA_2013"
## [21] "ChEA_2015"
## [22] "ChEA_2016"
## [23] "Chromosome_Location"
## [24] "Chromosome_Location_hg19"
## [25] "ClinVar_2019"
## [26] "CORUM"
## [27] "COVID-19_Related_Gene_Sets"
## [28] "Data_Acquisition_Method_Most_Popular_Genes"
## [29] "dbGaP"
## [30] "DepMap_WG_CRISPR_Screens_Broad_CellLines_2019"
## [31] "DepMap_WG_CRISPR_Screens_Sanger_CellLines_2019"
## [32] "Disease_Perturbations_from_GEO_down"
## [33] "Disease_Perturbations_from_GEO_up"
## [34] "Disease_Signatures_from_GEO_down_2014"
## [35] "Disease_Signatures_from_GEO_up_2014"
## [36] "DisGeNET"
## [37] "Drug_Perturbations_from_GEO_2014"
## [38] "Drug_Perturbations_from_GEO_down"
## [39] "Drug_Perturbations_from_GEO_up"
## [40] "DrugMatrix"
## [41] "DSigDB"
## [42] "Elsevier_Pathway_Collection"
## [43] "ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X"
## [44] "ENCODE_Histone_Modifications_2013"
## [45] "ENCODE_Histone_Modifications_2015"
## [46] "ENCODE_TF_ChIP-seq_2014"
## [47] "ENCODE_TF_ChIP-seq_2015"
## [48] "Enrichr_Libraries_Most_Popular_Genes"
## [49] "Enrichr_Submissions_TF-Gene_Coocurrence"
## [50] "Enrichr_Users_Contributed_Lists_2020"
## [51] "Epigenomics_Roadmap_HM_ChIP-seq"
## [52] "ESCAPE"
## [53] "Gene_Perturbations_from_GEO_down"
## [54] "Gene_Perturbations_from_GEO_up"
## [55] "Genes_Associated_with_NIH_Grants"
## [56] "GeneSigDB"
## [57] "Genome_Browser_PWMs"
## [58] "GO_Biological_Process_2013"
## [59] "GO_Biological_Process_2015"
## [60] "GO_Biological_Process_2017"
## [61] "GO_Biological_Process_2017b"
## [62] "GO_Biological_Process_2018"
## [63] "GO_Cellular_Component_2013"
## [64] "GO_Cellular_Component_2015"
## [65] "GO_Cellular_Component_2017"
## [66] "GO_Cellular_Component_2017b"
## [67] "GO_Cellular_Component_2018"
## [68] "GO_Molecular_Function_2013"
## [69] "GO_Molecular_Function_2015"
## [70] "GO_Molecular_Function_2017"
## [71] "GO_Molecular_Function_2017b"
## [72] "GO_Molecular_Function_2018"
## [73] "GTEx_Tissue_Sample_Gene_Expression_Profiles_down"
## [74] "GTEx_Tissue_Sample_Gene_Expression_Profiles_up"
## [75] "GWAS_Catalog_2019"
## [76] "HMDB_Metabolites"
## [77] "HMS_LINCS_KinomeScan"
## [78] "HomoloGene"
## [79] "Human_Gene_Atlas"
## [80] "Human_Phenotype_Ontology"
## [81] "HumanCyc_2015"
## [82] "HumanCyc_2016"
## [83] "huMAP"
## [84] "InterPro_Domains_2019"
## [85] "Jensen_COMPARTMENTS"
## [86] "Jensen_DISEASES"
## [87] "Jensen_TISSUES"
## [88] "KEA_2013"
## [89] "KEA_2015"
## [90] "KEGG_2013"
## [91] "KEGG_2015"
## [92] "KEGG_2016"
## [93] "KEGG_2019_Human"
## [94] "KEGG_2019_Mouse"
## [95] "Kinase_Perturbations_from_GEO_down"
## [96] "Kinase_Perturbations_from_GEO_up"
## [97] "L1000_Kinase_and_GPCR_Perturbations_down"
## [98] "L1000_Kinase_and_GPCR_Perturbations_up"
## [99] "Ligand_Perturbations_from_GEO_down"
## [100] "Ligand_Perturbations_from_GEO_up"
## [101] "LINCS_L1000_Chem_Pert_down"
## [102] "LINCS_L1000_Chem_Pert_up"
## [103] "LINCS_L1000_Ligand_Perturbations_down"
## [104] "LINCS_L1000_Ligand_Perturbations_up"
## [105] "lncHUB_lncRNA_Co-Expression"
## [106] "MCF7_Perturbations_from_GEO_down"
## [107] "MCF7_Perturbations_from_GEO_up"
## [108] "MGI_Mammalian_Phenotype_2013"
## [109] "MGI_Mammalian_Phenotype_2017"
## [110] "MGI_Mammalian_Phenotype_Level_3"
## [111] "MGI_Mammalian_Phenotype_Level_4"
## [112] "MGI_Mammalian_Phenotype_Level_4_2019"
## [113] "Microbe_Perturbations_from_GEO_down"
## [114] "Microbe_Perturbations_from_GEO_up"
## [115] "miRTarBase_2017"
## [116] "Mouse_Gene_Atlas"
## [117] "MSigDB_Computational"
## [118] "MSigDB_Hallmark_2020"
## [119] "MSigDB_Oncogenic_Signatures"
## [120] "NCI-60_Cancer_Cell_Lines"
## [121] "NCI-Nature_2015"
## [122] "NCI-Nature_2016"
## [123] "NIH_Funded_PIs_2017_AutoRIF_ARCHS4_Predictions"
## [124] "NIH_Funded_PIs_2017_GeneRIF_ARCHS4_Predictions"
## [125] "NIH_Funded_PIs_2017_Human_AutoRIF"
## [126] "NIH_Funded_PIs_2017_Human_GeneRIF"
## [127] "NURSA_Human_Endogenous_Complexome"
## [128] "Old_CMAP_down"
## [129] "Old_CMAP_up"
## [130] "OMIM_Disease"
## [131] "OMIM_Expanded"
## [132] "Panther_2015"
## [133] "Panther_2016"
## [134] "Pfam_Domains_2019"
## [135] "Pfam_InterPro_Domains"
## [136] "PheWeb_2019"
## [137] "Phosphatase_Substrates_from_DEPOD"
## [138] "PPI_Hub_Proteins"
## [139] "ProteomicsDB_2020"
## [140] "Rare_Diseases_AutoRIF_ARCHS4_Predictions"
## [141] "Rare_Diseases_AutoRIF_Gene_Lists"
## [142] "Rare_Diseases_GeneRIF_ARCHS4_Predictions"
## [143] "Rare_Diseases_GeneRIF_Gene_Lists"
## [144] "Reactome_2013"
## [145] "Reactome_2015"
## [146] "Reactome_2016"
## [147] "RNA-Seq_Disease_Gene_and_Drug_Signatures_from_GEO"
## [148] "SILAC_Phosphoproteomics"
## [149] "SubCell_BarCode"
## [150] "SysMyo_Muscle_Gene_Sets"
## [151] "Table_Mining_of_CRISPR_Studies"
## [152] "TargetScan_microRNA"
## [153] "TargetScan_microRNA_2017"
## [154] "TF_Perturbations_Followed_by_Expression"
## [155] "TF-LOF_Expression_from_GEO"
## [156] "TG_GATES_2020"
## [157] "Tissue_Protein_Expression_from_Human_Proteome_Map"
## [158] "Tissue_Protein_Expression_from_ProteomicsDB"
## [159] "Transcription_Factor_PPIs"
## [160] "TRANSFAC_and_JASPAR_PWMs"
## [161] "TRRUST_Transcription_Factors_2019"
## [162] "UK_Biobank_GWAS_v1"
## [163] "Virus_Perturbations_from_GEO_down"
## [164] "Virus_Perturbations_from_GEO_up"
## [165] "Virus-Host_PPI_P-HIPSTer_2020"
## [166] "VirusMINT"
## [167] "WikiPathways_2013"
## [168] "WikiPathways_2015"
## [169] "WikiPathways_2016"
## [170] "WikiPathways_2019_Human"
## [171] "WikiPathways_2019_Mouse"
Search for mouse databases with keyword "Mouse"
grep("Mouse",dbs$libraryName),]$libraryName dbs[
## [1] "KEGG_2019_Mouse" "Mouse_Gene_Atlas" "WikiPathways_2019_Mouse"
c("GO_Molecular_Function_2018", "GO_Cellular_Component_2018", "GO_Biological_Process_2018")
dbs_go <- c("KEGG_2019_Mouse", "WikiPathways_2019_Mouse", "BioPlanet_2019")
dbs_pw <- c("PheWeb_2019", "ClinVar_2019") dbs_dd <-
enrichr(genes = up.genes.df$SYMBOL, databases = dbs_go) upEnriched_go <-
## Uploading data to Enrichr... Done.
## Querying GO_Molecular_Function_2018... Done.
## Querying GO_Cellular_Component_2018... Done.
## Querying GO_Biological_Process_2018... Done.
## Parsing results... Done.
enrichr(genes = dn.genes.df$SYMBOL, databases = dbs_go) dnEnriched_go <-
## Uploading data to Enrichr... Done.
## Querying GO_Molecular_Function_2018... Done.
## Querying GO_Cellular_Component_2018... Done.
## Querying GO_Biological_Process_2018... Done.
## Parsing results... Done.
class(upEnriched_go)
## [1] "list"
names(upEnriched_go)
## [1] "GO_Molecular_Function_2018" "GO_Cellular_Component_2018" "GO_Biological_Process_2018"
# View top 5 terms in the first element of the list
head(upEnriched_go[[1]], 5)
## Term Overlap P.value
## 1 GTPase activator activity (GO:0005096) 15/249 0.00006671951
## 2 GTPase regulator activity (GO:0030695) 15/275 0.00020020157
## 3 peptidoglycan binding (GO:0042834) 3/16 0.00294039405
## 4 Rho guanyl-nucleotide exchange factor activity (GO:0005089) 5/59 0.00466003336
## 5 sodium channel inhibitor activity (GO:0019871) 2/6 0.00487394563
## Adjusted.P.value Old.P.value Old.Adjusted.P.value Odds.Ratio Combined.Score
## 1 0.02675452 0 0 3.502347 33.67512
## 2 0.04014042 0 0 3.147887 26.80799
## 3 0.39089044 0 0 12.335150 71.90420
## 4 0.39089044 0 0 4.966007 26.66116
## 5 0.39089044 0 0 26.665761 141.96455
## Genes
## 1 VAV3;RAP1GAP2;RGS18;STARD13;DOCK4;TBC1D9B;RGS19;RGS14;DAB2IP;AXIN2;ARHGAP12;ARHGAP32;CDC42EP3;RGS11;EVI5
## 2 VAV3;RAP1GAP2;RGS18;STARD13;DOCK4;TBC1D9B;RGS19;RGS14;DAB2IP;AXIN2;ARHGAP12;ARHGAP32;CDC42EP3;RGS11;EVI5
## 3 NOD1;NOD2;PGLYRP1
## 4 VAV3;TIAM2;NET1;FARP1;ITSN1
## 5 NEDD4;SCN1B
enrichr(genes = up.genes.df$SYMBOL, databases = dbs_pw) upEnriched_pw <-
## Uploading data to Enrichr... Done.
## Querying KEGG_2019_Mouse... Done.
## Querying WikiPathways_2019_Mouse... Done.
## Querying BioPlanet_2019... Done.
## Parsing results... Done.
enrichr(genes = dn.genes.df$SYMBOL, databases = dbs_pw) dnEnriched_pw <-
## Uploading data to Enrichr... Done.
## Querying KEGG_2019_Mouse... Done.
## Querying WikiPathways_2019_Mouse... Done.
## Querying BioPlanet_2019... Done.
## Parsing results... Done.
class(upEnriched_pw)
## [1] "list"
names(upEnriched_pw)
## [1] "KEGG_2019_Mouse" "WikiPathways_2019_Mouse" "BioPlanet_2019"
# View top 5 terms in the first element of the list
head(upEnriched_pw[[1]], 5)
## Term Overlap P.value
## 1 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 7/72 0.0003675764
## 2 Rap1 signaling pathway 12/209 0.0005426545
## 3 Complement and coagulation cascades 7/88 0.0012315737
## 4 Dilated cardiomyopathy (DCM) 7/90 0.0014046617
## 5 Transcriptional misregulation in cancer 10/183 0.0022266832
## Adjusted.P.value Old.P.value Old.Adjusted.P.value Odds.Ratio Combined.Score
## 1 0.05833535 0 0 5.804408 45.90462
## 2 0.05833535 0 0 3.306525 24.86189
## 3 0.07550057 0 0 4.654049 31.17963
## 4 0.07550057 0 0 4.541438 29.82798
## 5 0.08754581 0 0 3.124117 19.07974
## Genes
## 1 ITGB1;TCF7L2;CACNB3;TCF7L1;ITGA4;ITGA6;ITGA9
## 2 ITGB1;DOCK4;SIPA1L1;ITGAM;RGS14;FLT4;ADCY3;LCP2;RASGRP2;ADCY6;BCAR1;FGFR1
## 3 C4B;THBD;ITGAM;SERPINB2;CFH;CD55;F5
## 4 ITGB1;CACNB3;ITGA4;ADCY3;ITGA6;ADCY6;ITGA9
## 5 PER2;SMAD1;LYL1;MAF;ITGAM;ZEB1;NUPR1;MMP9;KLF3;PBX1
enrichr(genes = up.genes.df$SYMBOL, databases = dbs_dd) upEnriched_dd <-
## Uploading data to Enrichr... Done.
## Querying PheWeb_2019... Done.
## Querying ClinVar_2019... Done.
## Parsing results... Done.
enrichr(genes = dn.genes.df$SYMBOL, databases = dbs_dd) dnEnriched_dd <-
## Uploading data to Enrichr... Done.
## Querying PheWeb_2019... Done.
## Querying ClinVar_2019... Done.
## Parsing results... Done.
class(upEnriched_dd)
## [1] "list"
names(upEnriched_dd)
## [1] "PheWeb_2019" "ClinVar_2019"
# View top 5 terms in the first element of the list
head(upEnriched_dd[[1]], 5)
## Term Overlap P.value Adjusted.P.value Old.P.value
## 1 Difficulty in walking 4/21 0.0005375414 0.2177043 0
## 2 Circulatory disease NEC 3/24 0.0095281171 0.4761665 0
## 3 Eustachian tube disorders 2/12 0.0199293058 0.4761665 0
## 4 Hypercoagulable state 3/32 0.0209519920 0.4761665 0
## 5 Hypercholesterolemia 3/35 0.0265524980 0.4761665 0
## Old.Adjusted.P.value Odds.Ratio Combined.Score Genes
## 1 0 12.608807 94.92547 SLC12A5;AQP9;MTUS1;MMP9
## 2 0 7.632931 35.51991 KLHL33;HIBCH;TTC28
## 3 0 10.663043 41.75183 EPB41L3;ANO6
## 4 0 5.525040 21.35716 SELP;PRKG1;F5
## 5 0 5.006301 18.16602 ZCCHC24;CADM1;CDC42EP3
Demonstrate using different paramters to plot enrichment using the plotEnrich
function.
plotEnrich(upEnriched_go[[3]], showTerms = 20, numChar = 50, y = "Count", orderBy = "P.value")
plotEnrich(upEnriched_pw[[1]], showTerms = 15, numChar = 40, y = "Ratio", orderBy = "P.value")
plotEnrich(upEnriched_dd[[2]], showTerms = 10, numChar = 30, y = "Count", orderBy = "Combined.Score")
Use the printEnrich
function to output Enrichr results to tab-delimited text files.
printEnrich(upEnriched_go, prefix = "enrichr-GO-up", showTerms = 20)
printEnrich(dnEnriched_go, prefix = "enrichr-GO-dn", showTerms = 20)
printEnrich(upEnriched_pw, prefix = "enrichr-PW-up", showTerms = 20)
printEnrich(dnEnriched_pw, prefix = "enrichr-PW-dn", showTerms = 20)
printEnrich(upEnriched_dd, prefix = "enrichr-DD-up", showTerms = 20)
printEnrich(dnEnriched_dd, prefix = "enrichr-DD-dn", showTerms = 20)
sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-conda-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
##
## Matrix products: default
## BLAS/LAPACK: /home/ihsuan/miniconda3/envs/r4/lib/libopenblasp-r0.3.12.so
##
## locale:
## [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8
## [4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C LC_ADDRESS=C
## [10] LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets methods
## [9] base
##
## other attached packages:
## [1] org.Mm.eg.db_3.12.0 AnnotationDbi_1.52.0 IRanges_2.24.1 S4Vectors_0.28.1
## [5] Biobase_2.50.0 BiocGenerics_0.36.0 ggplot2_3.3.3 enrichR_3.0
## [9] knitr_1.31
##
## loaded via a namespace (and not attached):
## [1] enrichplot_1.10.2 bit64_4.0.5 RColorBrewer_1.1-2
## [4] httr_1.4.2 tools_4.0.3 bslib_0.2.4
## [7] utf8_1.1.4 R6_2.5.0 DBI_1.1.1
## [10] colorspace_2.0-0 withr_2.4.1 tidyselect_1.1.0
## [13] gridExtra_2.3 bit_4.0.4 curl_4.3
## [16] compiler_4.0.3 scatterpie_0.1.5 labeling_0.4.2
## [19] shadowtext_0.0.7 sass_0.3.1 scales_1.1.1
## [22] stringr_1.4.0 digest_0.6.27 rmarkdown_2.7
## [25] DOSE_3.16.0 pkgconfig_2.0.3 htmltools_0.5.1.1
## [28] highr_0.8 fastmap_1.1.0 rlang_0.4.10
## [31] RSQLite_2.2.3 jquerylib_0.1.3 generics_0.1.0
## [34] farver_2.1.0 jsonlite_1.7.2 BiocParallel_1.24.1
## [37] GOSemSim_2.16.1 dplyr_1.0.4 magrittr_2.0.1
## [40] GO.db_3.12.1 Matrix_1.3-2 Rcpp_1.0.6
## [43] munsell_0.5.0 fansi_0.4.2 viridis_0.5.1
## [46] lifecycle_1.0.0 stringi_1.5.3 yaml_2.2.1
## [49] ggraph_2.0.5 MASS_7.3-53.1 plyr_1.8.6
## [52] qvalue_2.22.0 grid_4.0.3 blob_1.2.1
## [55] ggrepel_0.9.1 DO.db_2.9 crayon_1.4.1
## [58] lattice_0.20-41 graphlayouts_0.7.1 cowplot_1.1.1
## [61] splines_4.0.3 pillar_1.5.0 fgsea_1.16.0
## [64] igraph_1.2.6 rjson_0.2.20 reshape2_1.4.4
## [67] fastmatch_1.1-0 glue_1.4.2 evaluate_0.14
## [70] downloader_0.4 data.table_1.14.0 BiocManager_1.30.10
## [73] vctrs_0.3.6 tweenr_1.0.1 gtable_0.3.0
## [76] purrr_0.3.4 polyclip_1.10-0 tidyr_1.1.3
## [79] assertthat_0.2.1 cachem_1.0.4 xfun_0.21
## [82] ggforce_0.3.2 tidygraph_1.2.0 viridisLite_0.3.0
## [85] tibble_3.1.0 clusterProfiler_3.18.1 rvcheck_0.1.8
## [88] memoise_2.0.0 ellipsis_0.3.1